Reinforcement Learning, Second Edition: An Introduction

Reinforcement Learning, Second Edition: An Introduction

By Richard S Sutton and Andrew G Barto
Hardcover – Illustrated
Regular price$100.00
/
Shipping calculated at checkout.
Non-returnable discount pricing
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence.

Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.

Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.


Details

Publish date November 13, 2018
Publisher Bradford Book
Format Hardcover
Pages 552
ISBN 9780262039246
0262039249

New Releases View all

February 25, 2025
February 25, 2025
February 18, 2025
February 18, 2025
February 11, 2025
February 11, 2025